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Two-Dimensional Adaptive Mesh Generation Algorithm and its 
Application with Higher-Order Compressible Flow Solver 

Sutthisak Phongthanapanich, Pramote Dechaumphai* 
Mechanical Engineering Department, Chulalongkorn University, 

Bangkok 10330, Thailand 

A combined procedure for two-dimensional Delaunay mesh generation algorithm and an 

adaptive remeshing technique with higher-order compressible flow solver is presented. A 

pseudo-code procedure is described for the adaptive remeshing technique. The flux-difference 

splitting scheme with a modified multidimensional dissipation for high-speed compressible flow 

analysis on unstructured meshes is proposed. The scheme eliminates nonphysical flow solutions 

such as the spurious bump of the carbuncle phenomenon observed from the bow shock of the 

flow over a blunt body and the oscillation in the odd-even grid perturbation in a straight duct 

for the Quirk's odd-even decoupling test. The proposed scheme is further extended to achieve 

higher-order spatial and temporal solution accuracy. The performance of the combined proce- 

dure is evaluated on unstructured triangular meshes by solving several steady-state and transient 

high-speed compressible flow problems. 
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1. Introduction 

Spatial discretization of a given domain is a 

prerequisite for solutions with finite-element or 

finite-volume method of a partial differential 

equations system that represents the physical 

model of the problem. Generally, triangulation 

process starts from the generation of the point 

list; the points are subsequently connected into 

triangular elements. The points connection step is 

often performed by constructing the Delaunay 

triangulation (Bowyer, 1981; Watson, 1981) of 

the point set to guarantee triangles which are 

as well-shaped as possible for the given points. 

Since the Delaunay triangulation in itself does 

not include procedures for creating points in- 
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side the domain, points are generated indepen- 

dently by an automatic point creation algorithm 

(Marchant and Weatherill, 1993 ; Karamete et al., 

1997). 
To enhance the solution accuracy of the nu- 

merical analysis and to improve the computed 

solution, mesh adaptation is needed. An adaptive 

remeshing technique is incorporated with an 

appropriated error indicator to dictate a close 

correlation between the size of elements and the 

behavior of the corresponding computed solu- 

tion. The technique is implemented to capture 

the fast variation of the solution with a reason- 

able number of elements. The process of the 

adaptive meshing is to first generate an initial 

mesh for the domain. The mesh is used to com- 

pute the corresponding solution by the finite- 

element or finite-volume method. Then the re- 

gions where adaptation is vital are determined 
by an error indicator, and new adapted mesh for 

the solution is entirely generated. The same pro- 
cess is repeated until the specified convergence 

criterion is met. The efficiency of the overall 
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procedure is evaluated by calculating flows that 

include the supersonic shock waves and shock 

propagation behaviors. 

High-speed compressible flows normally in- 

volve complex flow phenomena, such as strong 

shock waves and shock-shock interactions. Vari- 

ous numerical inviscid flux formulations have 

been proposed to solve an approximate Riemann 

problem (Roe, 1981 ; Steger and Warming, 1981 ; 

Liou et al., 1993 ; Toro et al., 1994 ; Kang et al., 

2002 ; Kang et al., 2003). Among these formula- 

tions, the flux-difference splitting scheme by Roe 

(1981) is widely used due to its accuracy, quality 

and mathematical clarity. However, the scheme 

may sometimes lead to nonphysical flow solu- 

tions in certain problems, such as the carbuncle 

phenomenon (Perry and Imlay, 1988) with a 

spurious bump in the bow shock for flow over a 

blunt body. In the odd-even decoupling problem 

(Quirk, 1994), an unrealistic perturbation may 

grow with the planar shock as it moves along 

the duct. To improve the solution accuracy of 

these problems, Quirk pointed out that the ori- 

ginal Roe's scheme should be modified or re- 

placed by other schemes in the vicinity of strong 

shock. It has been known that the original Roe's 

scheme does not satisfy the entropy condition and 

may allow unrealistic expansion shock. Harten 

(1983) proposed an entropy fix formulation to 

replace the near zero small eigenvalues by some 

tolerances, The mathematical background of the 

Harten's entropy fix with the suggested tolerance 

values is given by Van Leer et a1.(1989). 

This paper proposed a mixed entropy fix me- 

thod for the Roe's scheme on adaptive unstruc- 

tured meshes for two-dimensional high-speed 

compressible flow analysis. The entropy fix me- 

thod by Van Leer et al. and the multidimen- 

sional dissipation technique of Pandolfi and 

D'Ambrosio (2001) are modified for unstructur- 
ed triangular meshes and implemented into the 

original Roe's scheme. The presented scheme is 

further extended to higher-order solution accura- 

cy and then evaluated by several benchmark test 

cases. 

The presentation in this paper starts at Section 
2 describing an adaptive remeshing technique 

with the implementation procedure in an ob- 

jected-oriented programming concept. Section 

3 describes the Roe's flux-difference splitting 

scheme with some well-known problems that ex- 

hibit numerical shock instability. A Roe's scheme 

with a mixed entropy fix method is then pro- 

posed and examined for their capabilities. The 

presented scheme is further extended to higher- 

order solution accuracy and then evaluated by 

several benchmark test cases in Section 4. Fin- 

ally, the performance of the scheme is evaluat- 

ed on adaptive unstructured meshes for solving 

both the steady-state and transient high-speed 

compressible flow problems. 

2. Delaunay Triangulation and 
Adaptation Technique 

2.1 Mesh generation and adaptation 
The mesh generation implemented in this pa- 

per follows the Delaunay triangulation (Bowyer, 
1981 ; Watson, 1981). The algorithm itself does 

not provide the procedure for creating new points 

inside the domain. The automatic point creation 

procedure presented in this paper are derived 

from the algorithm suggested by Marchant and 

Weatherill (1993). The shape and size of elements 

or density of points inside the domain are con- 

trolled by two coefficients, the Alpha and the Beta 

coefficients. The main idea of the automatic point 

creation procedure is to search for the element 

that conforms to both the Alpha and Beta testing 
criteria and a new point placement at the centroid 

of that element. New elements can then be created 

by the Delaunay triangulation algorithm. The 

step-by-step explanation of these algorithms was 

presented in detail in Ref. (Phongthanapanich and 

Dechaumphai, 2004). 

To capture fast variations of the solution, small 

elements are needed along that region in the 
domain. The proper element size hi is computed 

by requiring that the error should be uniform for 

all elements (Dechaumphai and Morgan, 1992): 

h~/li = h~in2~ax=COnstant ( 1 ) 

where ,~i is the higher principal quantity of the 
element considered, 
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/t~=max (2) -g~- '  -UU,  

and ~b is the selected solution indicator. In the 

above Eq. (1), Amax is the maximum principal 

quantity for all elements and hm,~ is the mini- 

mum element size specified by users. The regions, 
which will be refined or coarsened by Adaptive- 

Remeshing algorithm below, are identified by a 

dimensionless error indicator using the pres- 

sure-switch coefficient (Probert et al., 1991). The 

indicator at node I is given by, 

Ez - -  ' ~ '  (3) 
52. (A*+B*) 

e ~ I  

where ] and K are the other two nodes of the 

triangle, e, A* -max(I Cz- Cz I, a(¢z+ 01) ) and 
B * = m a x  ( [¢r-~b~l ,  a(~bx+¢K)). The value of 

a is used to identify the solution discontinuity 

or numerical oscillation. According to numerical 

experiment especially for the proposed scheme 

that will be explained later, the value of a is 

prescribed as 0.005 in this paper. This means 

A*=0.005(~b~+~bj) and B*=0.005(~b~+~br) i f  
~bj and ~br ate oscillated within 1% of ~bt, res- 

pectively. 

Practical experience found that this type of 

error indicator for the transient high-speed com- 

pressible flow problems, where regions such as 

shock or discontinuity have different strength, 

may cause inaccurate solution due to the inade- 

quate refinement because the point spacing is 

scaled according to the maximum value of the 

second derivatives. In order to overcome this 

problem, an element size scaling function, which 

scales the point spacing of point p~ within the 

rangd of Zrnln and Zmax, has been used : 

Z , : sca leRange(  hmax-dD, 0, 1, ,~mln, Xmax)(4) 
hmax- brain' 

The coefficient X~ controls the point insertion 
in the regions of high solution gradient and eli- 

minates excessive distortion of the regularity of 

the triangulation. The value of X~n limits the 
number of points insertion in the high gradient 

region such as shock, while the value of upper 

limit Zm~x allows to insert more points into the 

region with smaller solution gradient such as 

the tail of the expansion fan. When the adapted 

elements generated by this function are distorted 

in shape, the Alpha and Beta coefficients are 

incorporated to control the point density and the 

regularity of triangulation. 

The proposed adaptive mesh regeneration is 
based on the concepts of the Delaunay triangula- 

tion and the mesh refinement. The new mesh is 

constructed using the information from the previ- 

ous or background mesh, and it is composed of 

small elements in the regions with large changes 

of the solution gradients, and large elements in 

the remaining regions where the changes of the 

solution gradients are small. Detailed process of 

adaptive remeshing technique is described as 

follows. 

Algorithm AdaptiveRemeshing (P, 7], PO, al- 
pha, beta, h~a, hmax, Xin~n, Ximax, threshoM) 

1. Let /90, k---1, -", n be the set of points of 

the background mesh. 

2. Let P be the set of points and T be the set 

of triangles. 

3. Read next interior point Pl of the back- 
ground mesh from P0. 

4. If h~ > hmax then go to step 3. 

5. Search triangle ti in T which contains 
the point p~. Then calculate the centroid of the 

triangle ti and define it as point p~, and com- 

pute the point distribution function of point pq 
by Eq. (5). 

1 u (51 

where M is number of surrounding nodes to 

node q. 
6. Compute the distance din, r e = l ,  2, 3 from 

point pq to each of the three vertices of the 

triangle t~. 
7. Compute the Xi coefficient, Zi, for point 

Pi by using Eq. (4), and the average distance, 

si = (dl + dz+da) /3. 
8. Perform the Xi -Alpha  test for point pq. If 

(xi*aIpha*hi) >=s~,  then reject the point pq 
and return to step 3. 

9. Perform the Xi-Beta test for point do. If 

two out of  three of din< (xi*hr~n/beta) for any 
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m = 1, 2, 3, then reject the point pq and return to 

step 3. 
10. Accept the point pq for insertion by the 

Delaunay triangulation algorithm and add point 

pq into P.  
11. Repeat steps 3 to 10 until all points in P 

are considered. 

12. Perform the Delaunay triangulation of the 

inserted points in P.  

13. If number of accepted points greater than 

threshold, then go to step 3;  otherwise stop the 

algorithm. 

Since the proposed algorithm above does not 

guarantee the good mesh topology, the mesh re- 

laxation (Frey, 1991) based on an edge swap- 

ping technique is highly recommended for well- 

shaped mesh improvement. The objective of this 

method is to make the topology of elements closer 

to equilateral triangles by swapping edges to 

equalize the vertex degrees (number of edges link- 
ed to eac~ point) toward the value of six. Finally, 

the Laplacian smoothing is applied to smooth the 

meshes. 

2.2 Mesh generation implementation and 
algorithm evaluation 

This section presents the main algorithm for 

combining together the mesh generation from the 

Delaunay triangulation, the mesh refinement pro- 

cedure, and the adaptive remeshing technique. 

This main algorithm is demonstrated using the 

object-oriented programming concept that takes 

into account the advantages of the code enca- 

psulation, inheritance, and polymorphism capa- 

bilities. The implementation of  the main algo- 

rithm is summarized in the algorithm below. 

Algorithm Main 
(P, T, alpha, beta, iteration, Hmm, Hmax, 

Xi ~ ,  Xi max, threshold, isadaptive) 
Let BP be the collection of boundary point 

objects that stored in sequence of counter- 

clockwise direction for all outside boun- 
daries and clockwise direction for all inside 

boundaries ; 

Let PO be the collection of background point 

objects ; 

Let P be the collection of point objects ; 

Let T be the collection of mesh objects ; 

Let alpha be the constant that controls shape of 

formed triangles ; 

Let beta be the constant that controls regularity 
of the triangulation ; 

Let iteration be the number of  loops to refine 

meshes ; 

Let Hnan and /-/max be the minimum and maxi- 

mum element size, respectively; 

Let Xi ~n and Xi max be the minimum and 

maximum scaling coefficients, respectively; 

Let threshoM be the number of minimum increa- 

sing points for each iteration ; 

Let isadaptive be the flag to generate background 

or adaptive meshes ; 

Bp. Initialize ; 

PO. Initialize ; 

P. Initialize ; 

T. Initialize ; 

If. (&adaptive) { 

PO. ReadBackgroundNodes ; 

BP. RediscretizeBoundaryNodes ; 
}; 

Else { 

BP. ReadBoundaryNodes ; 
); 

BP. CreateConvexHull ; 

P. AddNode (BP. pl, BP. 772, BP. p3, BP. p4); 

T. AddTriangle (tl, BP. pl, BP. p2, BP. p3); 
T. AddTriangle (t2, BP. p3, BP. p2, BP. p4) ; 

Do p ~ BP.  NextBoundaryNode { 

Call DelaunayTriangulation (P, T, p); 
}; 
T. RemoveOutsideDomainTriangles ; 

Call MeshRefinement 
(P, T, alpha, beta, iteration) ; 

I f  (isadaptive) 

Call AdaptiveRemeshing 
(P, T, PO, alpha, beta, H~n, H . . . .  Xi rain, 
Xi max, threshoM) ; 

T. MeshRelaxation ; 

T. LaplaceSmoothing ; 

End ; 



2194 Sutthisak Phongthanapanich and Pramote Dechaumphai 

To evaluate the performance of  the adaptive 

remeshing technique with the Delaunay triangu- 

lation, the specification of element size, hi, is 

given as an analytic function defined for two-  

dimensional domain. The adaptive mesh genera- 

tion process starts from an initial mesh generat- 

ed in the domain, then the values of the element 

sizes at all points are computed by the given 

function. The mesh generation coupled with the 

adaptive remeshing procedure is iterated until 

the resulting mesh becomes globally stable. The 

iteration process is terminated if the total node 

increment is fewer than the specified number. 

The three examples of adaptive mesh generation 

with the analytical function for specifying ele- 

ment sizes presented herein are:  (1) adaptive 

meshes along the centerline of a rectangular 

domain, (2) adaptive meshes along the diagonal 

of a square domain, and (3) an a lpha-shape 

adaptive meshes in a square domain. 

Adaptive Meshes along Centerline of  a Rec- 

tangular Domain :  The first example presents an 

adaptive mesh generation in a 3.0 X 5.0 rectangul- 

ar domain. The element sizes at points in the 

domain are given by the distribution function, 

1 y - - / z  2 

h(y) = 0 . 4 2 -  2 ~ - e - [  2o I (6) 

where y is the variable and the values of /1  and 

• . . . ,  . . 

• " -!:2 !)::(.: '.::;: 

Initial mesh  I "~ iteration 

Fig. 1 

:!-):i 5::)?.- :)). 

3 ~ iteration 

: i . .!!7: : . : :  

2 "a iteration 

:: :"::.:: :::": Z: :I " - 

Adaptive meshes along centerline of a rectan- 
gular domain 

t7 are constants equal to zero and one, respec- 

tively. Figure 1 shows the series of adaptive 

meshes generated by three iterations based on a 

coarse initial mesh. The value of mesh generation 

coefficients, a, /3, Xmm, .,~max are 0.5, 0.6, 0.75, 

and 1.10, respectively. Due to the prescribed di- 

stribution function in Eq. (6), small element sizes 

are specified around the centerline of the do- 

main. The figure shows that size similarity of  the 

adaptive meshes is generated along the narrow 

band around the centerline of the domain. The 

value of Z~n limits the number of point insertion 

along the centerline of  the domain, while the 

value of  Xmax allows more nodes to be inserted 

into the other regions. 

The specification of scale range and Zm~n, Zmax 

have strong effects on the resulting meshes as 

shown in Fig. 1. Without  the scale range, the 

mesh is composed of small elements concentrat- 

ed around line a (see Fig. 2) with progressively 

larger elements outwards as ha<hb, he. Hence, 

a mesh consisting of relatively uniform elements 

in a wider centerline band of the domain may be 

generated. This mesh has better physical correla- 

tion with the behaviors of shocks. The scale 

range function sorts the nodal spacing values into 

prescribed intervals according to Z~n and Zmax- 

In each interval, the generated element sizes are 

relatively uniform. 

Adaptive Meshes along a Diagonal  of a Square 

Domain :  The second example concerns with an 

adaptive mesh generation in a unit square do- 

main. The element sizes are calculated by Eq. 

(7) where the constant a is set to 0.5 for this 

test case. Because this function generates both 
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negative and positive values, only the positive 
values of this function are used to determine the 
element size by scaling into the new range of  
0.001 and 0.2 : 

h(x, y)=2y(1-y)[tan-~/~ f 2 - ( l + : ~  ] a ( I - 2 x )  ~Ja~/~x(l-x) q . . 

+2x(l_x)[tan_~/~ a(l-2y) , a~/~y(l-y) q (7) 

where ~=ct[ (x -by) /v ' -2 - -0 .8] .  Figure 3 shows 
the sequence of  adaptive meshes generated by 
five iterations based on a coarse initial mesh. The 
value of mesh generation coefficients, a, 13, X~n, 
Xma~ are 0.5, 0.6, 0.4, and 0.75, respectively. The 
combination of  the values of  Xmm and Zmax, nar- 
rows the band along the diagonal line with small 
elements. 

Ini t ia l  m e s h  

3 ~ i t e r a t ion  

Fig. 3 

I s~ i t e r a t i tm  2 ~ i t e ra t ion  N N  . . . . . . . . . .  ~:~. '~gii~.:~: -:./. 

4 *  i t e ra t ion  5 th i t e ra t ion  

Adaptive meshes along the diagonal of a 
square domain 

. -  - . . . . .  , . . , 

I n i t i a l  m e s h  I ~ i t e r a t i o n  

2 ~ i t e r a t i o n  

Fig. 4 
3 ~ i t e r a t i on  4 ~ i t e r a t i o n  

An alpha-shape adaptive meshes in a square 
domain 

An Alpha-Shape Adaptive Meshes in a Square 
Domain:  The third example presents an alpha- 
shape adaptive mesh generation in a square do- 
main. The alpha shape function (Borouchaki et 
al., 1997) is used to calculate element sizes in an 
8 × 8 square domain : 

, [min(0,2(~--l)3+O.O05, 1.0) i f / ~ l  
h(x, y: = l  0 2 (8) [ rain(.2(/~-1) +0.01, 1.0) ifA<l 

where the value of  parameter /~ is determined 
from xa--y2q-2--3/ lx=0.  Figure 4 shows the 
sequence of four adaptive meshes generated from 
a coarse initial mesh. The value of mesh genera- 
tion coefficients, a, /3, Xmm, ;r, max are 0.5, 0.6, 0.5, 
and 0.85, respectively. The smaller elements are 
generated along the alpha-shape in the domain 
while larger elements are generated in the other 
regions. 

For practical problems, the preferred values of  
a and /3 are 0.5 and 0.6, respectively (Karamete 
et al., 1997). In general, the acceptable ranges of  
these t~ and /3 values are 0.3--0.8, and 0.7~ 1.3, 
respectively• In addition, the values of 0.4 and 
0.75 are chosen for X~n and Zmax, respectively, 
for all high-speed compressible flow test cases 
presented later in this paper. 

3. High-Speed  Compressible 
Flow Solver 

The performance of  the Delaunay triangula- 
tion, the automatic point creation procedure, and 
the adaptive remeshing technique has been eva- 
luated by applying to solve high-speed com- 
pressible flow problems. The Roe's flux-differ- 
ence splitting method is widely used for com- 
pressible flow solutions due to its efficiency for 
providing solution accuracy. This section briefly 
explains the method and its flexibility for com- 
bining with adaptive unstructured meshes to fur- 
ther improve the solution accuracy. 

Some certain problems for which the Roe's 
scheme may not provide correct solutions for the 
compressible Euler computation are presented 
in this section. Nonphysical numerical solutions 
may arise from the implementation of the one- 
dimensional upwinding numerical flux function 



2196 Sutthisak Phongthanapanich and Pramote Dechaumphai 

onto the multidimensional formulation. To avoid 

such solutions, a mixed entropy fix method that 

combines the entropy fix method of Van Leer et 

al. and the modified multidimensional dissipa- 

tion method by Pandolfi and D'Ambrosio (2001) 

is proposed in this paper. Details of these entropy 

fix methods are presented herein and their per- 

formance are determined by test cases. All solu- 

tions in this section use the Roe's scheme with 

the first-order accuracy on structured triangular 

meshes. 

3.1 Roe's f lux-di f ference  splitt ing se]aeme 

The governing differential equations of the 

Euler equations for the two-dimensional inviscid 

flow are given by, 

3U ~_ 9E ÷ 3G = 0  (9) 
0t 0x 0y 

where U is the vector of conservation variables, 

E and G are the vectors of the convection fluxes 

in x and y directions, respectively. The perfect 

gas equation of state is in the form, 

p = p e ( 7 - - 1 )  (10) 

where p is the pressure, p is the density, e is 

the internal energy, and 7 is the specific heat 

ratio. By integrating Eq. (9) over a control vol- 

ume, ~ ,  and applying the divergence theorem 

to the resulting flux integral, 

ff~t ~ Ud~2 + f ~gF . hdS =O (11) 

where F is the numerical flux vector and h is 

the unit normal vector of the cell boundary. The 

numerical flux vector at the cell interface be- 

tween the left cell L and the right cell R accord- 

ing to the Roe's scheme (1981) is, 

1 1 4 
F . = T ( F . L + F . ~ ) - - T ~ a k I A k I r k  (12) 

where ak is the wave strength of the k th wave, /lk 

is the eigenvalue, and rk is the corresponding 

right eigenvector. The eigenvalues in the above 

Eq. (12) are, 

,t~ = (13) 

[ V~-t- aJ 

where V. is the normal velocity, and a is the 

speed of sound at the cell interface. 

3.2 The mixed entropy fix method 

The original Roe's scheme previously describ- 

ed has been found to produce unphysical solu- 

tions of the Euler equations in some certain pro- 

blems. These include the expansion shock from 

a flow over a step, and the carbuncle pheno- 

menon of a flow over a blunt body. To avoid such 

unphysical solutions, the entropy fix methods 

(Harten, 1983; Van Leer et al., 1989; Pandolfi 

and D'Ambrosio, 2001; Lin, 1995; Sanders et 

al., 1998; Dechaumphai and Phongthanapanich, 

2003) have been proposed and investigated. By 

numerical experiment, the Van Leer et al.'s en- 

tropy fix method can perform very well for flows 

with expansion shocks that contain sonic points 

such as flows over a forward facing step. Mean- 

while, the Pandolfi and D'Ambrosio version of 

the H-correction entropy fix is suitable to cor- 

rect the numerical instability from insufficient 

dissipation injected to the entropy and shear wa- 

ves such as the flow over the blunt body pro- 

blem. Thus, this paper proposes a mixed entropy 

fix method that combines the entropy fix me- 

thod of Van Leer et al. and the modified multi- 

dimensional dissipation method by Pandolfi and 

D'Ambrosio, the modified H-correction, toge- 

ther by replacing the original eigenvalues as 

follows, 

[ IA,4I z ,1&41>-2~ VL 
- I A , , I  vL IA~I= / 4 ~ n - + ~  ,1A1,41<27] VL (14) 
/ -  

max ( 122,31, ~VA) 

where z 7 vL and z2 eA are determined from, 

~L=max  (A~-AL, 0) (15) 

rFa=max(~Tz, r/3, ~4, r2s) (16) 

The values r/i, i = 2  to 5 as shown in Figures 

5 (a)-(b)  for both the structured and unstructur- 

ed meshes are given by z/i=0.5max ( I/tke--/lkL l) 
k 

where Z and R denote the left and right elements, 

respectively. 
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i _ /: 
..... - ~-J "~ ' ' " -~ ,  3 ; - - - - - - t  

(a) (b) 
Fig. 5 Cell interfaces of: (a) structured uniform 

mesh ; (b) unstructured triangular mesh 
(a) (b) (c) (d) 

This mixed entropy fix method is equivalent 

to the Van Leer et al.'s entropy fix method in 

handling the acoustic waves (for k = l  and 4) 

and the Pandolfi  and D 'Ambros io  version of the 

H-cor rec t ion  entropy fix for the entropy and 
shear waves (for k = 2  and 3). The mixed entropy 

fix method has been evaluated in this paper using 

three test cases involving expansion shocks, the 

carbuncle phenomenon, and the odd-even de- 

coupling. These test cases highlight the perform- 

ance of  the proposed entropy fix method on pro- 

blems with different flow phenomena on struc- 

tured triangular meshes. 

The carbuncle phenomenon:  An unrealistic 

flow solution, the so-called carbuncle pheno- 

menon, of  a steady-state flow over a blunt body 

from the original Roe's scheme was first reported 

by Perry and Imlay (1988). Such phenomenon 

refers to a spurious bump on the bow shock near 

the flow center line ahead of  the blunt body. The 

phenomenon i s highly grid-dependent  (Pandolfi  

and D'Ambrosio,  2001), but does not require a 

large number of  grid points to appear (Gressier 

and Moschetta, 2000). Figures 6 (a ) - ( f )  show 

the computed density contours from the mixed 

entropy fix method using meshes of three dif- 

ferent element aspect ratios. The enlarged views of  

the elements near the flow center line of  the first, 

second, and the third meshes are also shown in 

the figures. The carbuncle phenomenon does not 

appear in all of  these meshes with different ele- 
ment aspect ratios. 

The Quirk's  test (odd-even decoupling) : Ano-  

ther test case is a mach 6 moving shock along 

odd-even grid perturbation in a straight duct 

(Quirk, 1994). The computat ional  domain con- 

sists of a uniform triangular mesh with 800 and 

20 equal intervals respectively along the axial 

(e) (f) 
Fig. 6 Math 15 flow over a blunt body, enlarged 

view of the mesh and computed density con- 
tours: (a)-(b)  first mesh; (c)-(d) second 
mesh ; and (e)- (f) third mesh 

x-50 x-210 x*410 

Fig. 7 Mach 6 moving shock along odd-even grid 
perturbation 

i,'6 ~ :;31 

F i g .  8 Diffraction of a Mach 2 shock over a 90 ° 
corner 

and the transverse directions of  the duct. The 

grids along the duct centerline are perturbed 

in the transverse direction with a magnitude of  

+10  -6. Figure 7 shows the computed density 

contours of  the normal shock at three locations 

along the duct by the mixed entropy fix method 

that provides accurate shock resolution. 

Shock diffraction: The last test case, the ex- 

pansion shock problem, used to evaluate the nu- 



2198 Sutthisak Phongthanapanich and Pramote Dechaumphai 

merical instability is the diffraction of a Mach 2 

shock moving over a 90 ° corner. Figure 8 shows 

the computed density contours obtained from the 

mixed entropy fix method. On the other hand, the 

original Roe's scheme could not provide proper 

solution due to the negative internal energy that 

occurs during the computation in the vicinity of 

the turning corner. 

4. H i g h e r - O r d e r  Extens ion  

and Appl icat ion on U n s t r u c t u r e d  

Tr iangu lar  M e s h e s  

4.1 Linear reconstruction for unstructured 
triangular mesh and temporal discre- 
tization 

Solution accuracy from the first-order formu- 

lation described in the preceding section can be 

improved by implementing a higher-order formu- 

lation for both space and time. A higher-order 

spatial discretization is achieved by applying the 

Taylor '  series expansion to the cell-centered so- 

lution for each cell face (Frink, 1994). For  in- 

stance, the solutions at the midpoint of an ele- 
ment edge between node 1 and 2 can be recon- 

structed from, 

where q = [ p  u v p ] r  consists the primitive 

variables of the density, the velocity components, 

and the pressure, respectively ; qc is the solution 

at the element centroid; qn, n = l ,  2, 3 are the 

solutions at nodes. In this paper, the pseudo- 

Laplacian method proposed by Holmes and 
Connell (Holmes and Connell, 1989) is used to 

determine nodal quantities, 

q.=X(wiqc,  w, (181 

where qc,~ are the surrounding cell-centered 

values of node n, w~ is the cell weights, and N 

is the number of the surrounding cells. The cell 
weights, w~, may be differed significantly from 

unity for some severe distorted meshes as indi- 

cated in Ref.(Holmes and Connell, 1989), with 
suggestion for clipping all the weights in the 

range of  0 to 2. In this paper, the clipping of 

weights is slightly different by modifying only 

the value of weights of boundary meshes. If any 

weight becomes negative, its absolute value is 

used for simplicity. Several examples presented 

below have shown that such modification per- 

forms well. The ~c in Eq. (17) represents the 

limiter for preventing spurious oscillation that 

may occur in the region of high gradients. In 

this study, Vekatakrishnan's limiter function 

(Vekatakrishnan, 1995) is selected. 

The second-order temporal accuracy is ac- 

hieved by implementing the second-order accu- 

rate Runge-Kutta  time stepping method (Shu and 
Osher, 1988). To reduce computational effort, the 

local element time steps are used for steady-state 

analysis, while the minimum global time step 

based on the idea in Ref. (Linde and Roe, 1997) 

is used for the transient analysis. 

4.2 Numerical evaluation 
The higher-order extension of the Roe's scheme 

with the proposed entropy fix method described 

in the preceding section is evaluated by solving 

several test cases. The modified scheme is also 

combined with the adaptive meshing technique 

that generates unstructured triangular meshes for 

more complex flow phenomena. The selected test 

cases are: (1) Symmetric rarefaction wave, (2) 

Oblique shock reflection at a wall, (3) Mach 2 

flow in a 15 ° channel, and (4) Mach 2 shock re- 

flection over a wedge. 

Symmetric rarefaction wave:  The initial con- 

ditions of the flow on the left and right sides of 

the tube are given by (p, u, P)L=(7.0,  --1.0, 
0.2) and (p, u, p)R=(7.0,  1.0, 0.2). Such initial 

conditions are chosen (Linde and Roe, 1997) 

to produce vacumm at the central region. The 

1.0×0.1 computational domain is divided into 

400 and 40 equal intervals in the x and y direc- 

tions, respectively, using all triangular elements. 
Figures 9 (a ) - (c )  show the first order accurate 

computed density, pressure and u-velocity distri- 
butions along the tube length at time t=0 .3  
which are compared with the Steger-Warming 

FVS (Steger and Warming, 1981), AUSM (Liou 
and Steffen, 1993), HLLC (Toro et al., 1994), 
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(c) 
Comparative exact and computed solutions 

at time t=0 .3  for symmetric rarefaction 

wave problem c9(2): (a) density distribu- 

t ions; (b) pressure distributions; and (c) 

u-velocity distributions 

and the exact solutions. The  density and pres- 

sure distr ibutions are nearly identical for the 

four schemes. But for the computed u-ve loc i ty ,  

the A U S M  and the H L L C  schemes give less 

solut ion accuracy as compared  to the Steger- 

Warming  FVS and the proposed schemes in the 

vicinity of  central region. This  problem was re- 

peated using the h igher -order  accurate scheme. 

Figures 10(a ) - (c )  show that such h igher -order  

extension of  Roe 's  scheme with the mixed en- 

t ropy fix method can provide  more accurate solu- 

tion than its f i rs t -order  solution. 

Obl ique  shock reflection at a wall : The prob- 

lem statement of  an obl ique  shock reflection at a 

wall  (Yee et al., 1985) on the domain  1.0×4.0 is 

presented in Fig. 11. The  adaptive remeshing 

technique described is section 2.3 is used to gen- 

erate adaptive unstructured t r iangular  meshes. 

The  procedure  starts by creating a relatively uni- 

form mesh as shown in Fig. 12(a). The  fluid 

analysis is then performed to generate the cor- 

responding solut ion such as the density contours  

as shown in Fig. 12(b).  This flow solut ion is 

then used to generate an adapt ive mesh to clus- 

ter small elements in the regions of  high density 

gradients, and at the same time, to use larger 

M = 2 , 9  

<> 

Fig. 11 

Y* 
M 2 .46  

Computa t iona l  domain  I 

1.0 

4 .0  =" 

Problem statement of an oblique shock re- 

flection at a wall 

(a) 

(c) 
Fig. 12 

(b) 

(d) 
An oblique shock reflection at a wall : (a)-  

(b) Initial mesh and the corresponding den- 

sity contours; and (c)-(d) Third adaptive 

mesh and the corresponding density con- 

tours 

elements on the other  regions. The  fluid analy- 

sis is then performed again to yield a more  ac- 

curate solution. The entire process is repeated to 
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Problem statement of a mach 2 flow in a 
15 ° channel 

(a) (b) 

Mach 2 flow in a 15 ° channel ~9(1): (a) 
Third adaptive mesh; and (b) Density 
contours 

Fig. 13 

X 

(b) 

Comparative solutions of an oblique shock 
reflection at a wall ~9(2): (a) density distri- 
bution ; and (b) pressure distribution 

generate the third adaptive mesh and the cor- 

responding solution as shown in Figs. 12 (c)- (d). 

Figures 13 (a) - (b) show comparative density and 

pressure distributions between the computed and 

exact solutions at y=0 .5 .  The figures show the 

higher-order accurate scheme can capture abrupt 

change of the solutions across the shocks very 

well. 

Mach 2 flow in a 15 ° channel : Both the first- 

order and higher-order Roe's schemes with the 

proposed entropy fix method are evaluated on 

unstructured meshes by using the problem of a 

Mach 2 flow in a 15 ° channel as presented in 

Fig. 14. The third adaptive mesh and its cor- 

responding density contours computed by using 

the first-order scheme are shown in Figures 15 

(a ) - (b ) ,  respectively. The analysis of Mach 2 

flow in the 15 ° channel is repeated but with the 

use of the higher-order scheme. The third adap- 

tive mesh, and its corresponding density con- 

tours are shown in Figs. 16(a)-(b) .  These fig- 

ures highlight the capability of the higher-order 

Fig. 16 

/ ' ~  / /  

(a) (b) 

Mach 2 flow in a 15 ° channel 0(2): (a) 
Third adaptive mesh; and (b) Density 
contours 

scheme for providing more detailed flow beha- 

vior, such as the stem generated from the shock 

impinging on the upper wall which could not be 

captured by the first-order scheme. 

Mach 2 shock reflection over a wedge: The 

computational domain for a Mach 2 shock re- 

flection over a wedge at 46 degrees (Takayama 

and Jiang, 1997) is illustrated in Figure 17. Fig- 

ure 18 shows series of the transient adaptive 

meshes and the corresponding computed density 

contours at different time instants as the reflection 

shock starts to form over a wedge. The transient 

adaptive meshes consist of approximately 20,000 

elements in early time before the normal shock 

reaches the wedge corner, and the number of 

elements are increased to approximately 28,000 

at bottom right image of Fig. 18. The figures 

highlight the use of the higher-order accurate 

scheme on adaptive meshes to effectively obtain 

detailed flow solution. 
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Fig. 17 

Computational domain - - ~  

I I 

0.25 ~ 0.75 a' 

Problem statement of a Mach 2 shock re- 
flection over a wedge 

Fig. tS 

i 

Transient adaptive meshes and the computed 
density contours of a Mach 2 shock reflec- 
tion over a wedge at four different stages of 
the computation ~9(2) 

5. Conclusion 

A two-dimensional adaptive Delaunay mesh 
generation algorithm and its application for 
high-speed compressible flow were presented. 
The adaptive remeshing technique was described 
in detail with the pseudo-code presented in ob- 
ject-oriented programming concept. To capture 
fast variations of the solution effectively, a new 
element size scaling function was introduced into 
the adaptive remeshing technique. The combined 
algorithm was evaluated by generating adaptive 
meshes for three examples with prescribed ele- 
ment size functions. 

A mixed entropy fix method was proposed to 
improve numerical stability of the Roe's flux- 
difference splitting scheme for solving high- 
speed compressible flow problems. The method 
combines the entropy fixes by Van Leer et al. 
together with Pandolfi and D'Ambrosio. The me- 
thod was then evaluated by several well-known 
test cases and it was found to eliminate unphy- 

sical solutions that may arise from the use of 
the original Roe's scheme. The method was also 
combined with an adaptive mesh generation tech- 
nique to demonstrate its applicability for arbi- 
trary unstructured meshes. The entire process was 
found to provide accurate solutions for both 
steady-state and transient flow test cases. 
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